An Immersive Haptic Experimentation for Dematerialized Textile Perception in Collaborative Design Processes
Abstract
This experimentation arises in the context of the design process of digital tools in the fashion sector of Made in Italy. The contribution presents an overview of the main insights gained from the analysis of the state of the art and experimentation conducted in order to obtain a low-cost digital textile sampling and restitution process useful for possible new advanced modalities of collaborative remote design. This project is related to the extended MICS partnership of the PNRR project that researches at a low TRL level new scenarios for the integration of immersive technologies in traditional craft processes.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.2423/i22394303v14n1p129
References
D capture software—Adobe Substance 3D Sampler. (n.d.). Retrieved 16 September 2023, Retrived from https://www.adobe.com/products/substance3d-sampler.html
D design software for authoring—Adobe Substance 3D. (n.d.). Retrieved 26 March 2024, Retrived from https://www.adobe.com/products/substance3d-designer.html
Adams, R. J., & Hannaford, B. (1999). Stable haptic interaction with virtual environments. IEEE Transactions on Robotics and Automation, 15(3), 465–474. doi:/10.1109/70.768179
Adobe Substance 3D. (n.d.). Your Smartphone Is a Material Scanner Vol. II | Adobe Substance 3D. Retrieved 26 March 2024, from https://www.adobe.com/products/substance3d/magazine/your-smartphone-is-a-material-scanner-vol-ii.html
Ballabeni, M., Fallavollita, F., Foschi, R., & Perugini, G. (2015). Semantic description of three-dimensional models of Bologna porches. SCIRES-IT - SCIentific RESearch and Information Technology, 5(1),31-40. Doi: 10.2423/i22394303v5n1p31
Cao, X., Santo, H., Shi, B., Okura, F., & Matsushita, Y. (2022). Bilateral normal integration. In European Conference on Computer Vision (pp. 552-567). Cham: Springer Nature Switzerland.
Chaos Scans—Chaos Scans—Global Site. (n.d.). Retrieved 26 March 2024, from https://docs.chaos.com/display/VRSCANS/Chaos+Scans
Dall’Osso & Pezzi. (2022). Haptic microinteractions, silent details in human-space interaction. In Human Body Interaction (p. 12). https://cris.unibo.it/handle/11585/912364
Darktable. (n.d.). Darktable. Retrieved 26 March 2024, from https://www.darktable.org/
Details Capture | Photometric Stereo | VFX Grace. (2021, March 4). https://www.vfxgrace.com/product/detail-capture/
El Saddik, A. (2007). The Potential of Haptics Technologies. IEEE Instrumentation & Measurement Magazine, 10(1), 10–17. https://doi.org/10.1109/MIM.2007.339540
Filip, J., & Haindl, M. (2009). Bidirectional Texture Function Modeling: A State of the Art Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 1921–1940. https://doi.org/10.1109/TPAMI.2008.246
Gabardi, M., Leonardis, D., Solazzi, M., & Frisoli, A. (2018). Development of a miniaturized thermal module designed for integration in a wearable haptic device. 2018 IEEE Haptics Symposium (HAPTICS), 100–105. https://doi.org/10.1109/HAPTICS.2018.8357160
Gu, X., Zhang, Y., Sun, W., Bian, Y., Zhou, D., & Kristensson, P. O. (2016). Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1991–1995. https://doi.org/10.1145/2858036.2858487
Haptic Glove for Virtual Reality with Force Feedback | TESLAGLOVE. (n.d.). Teslasuit. Retrieved 23 March 2024, from https://teslasuit.io/products/teslaglove/
HaptiX. (n.d.). Haptic Gloves G1—Gloves for virtual reality and robotics. HaptX. Retrieved 23 March 2024, from https://haptx.com/
Hayward, V., Astley, O. R., Cruz‐Hernandez, M., Grant, D., & Robles‐De‐La‐Torre, G. (2004). Haptic interfaces and devices. Sensor Review, 24(1), 16–29. https://doi.org/10.1108/02602280410515770
Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction: A framework on physical space and social interaction. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 437–446. https://doi.org/10.1145/1124772.1124838
Karuei, I., MacLean, K. E., Foley-Fisher, Z., MacKenzie, R., Koch, S., & El-Zohairy, M. (2011). Detecting vibrations across the body in mobile contexts. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 3267–3276. https://doi.org/10.1145/1978942.1979426
Kettner, R., Bader, P., Kosch, T., Schneegass, S., & Schmidt, A. (2017). Towards pressure-based feedback for non-stressful tactile notifications. Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services. https://doi.org/10.1145/3098279.3122132
Kim, H., & Hyun, K. H. (2023). HAPmini: 2D haptic feedback generation using single actuator device. PLOS ONE, 18(4), e0285002. https://doi.org/10.1371/journal.pone.0285002
LaValle, Steven M. (2023). Virtual Reality—LaValle. https://lavalle.pl/vr/
Liritzis, I., Al-Otaibi, F. M., & Volonakis, P. (2015). DIGITAL TECHNOLOGIES AND TRENDS IN CULTURAL HERITAGE. Mediterranean Archaeology and Archaeometry, 15(3), Article 3.
Maldonado, T., & Maldonado, T. (1992). Reale e virtuale / Tomàs Maldonado. In Reale e virtuale (Nuova ed.). Feltrinelli.
Materialize. (n.d.). https://boundingboxsoftware.com/materialize/
Matthies, D. J. C., Müller, F., Anthes, C., & Kranzlmüller, D. (2013). ShoeSoleSense: Proof of concept for a wearable foot interface for virtual and real environments. Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, 93–96. https://doi.org/10.1145/2503713.2503740
Natkin, S., & Yan, C. (2005). Analysis of Correspondences between Real and Virtual Worlds in General Public Applications (p. 332). https://doi.org/10.1109/CGIV.2005.18
Ngan, A., Durand, F., & Matusik, W. (2005). Experimental Analysis of BRDF Models. Rendering Techniques, 2005(16th), 2.
Niehorster, D. C., Li, L., & Lappe, M. (2017). The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research. I-Perception, 8(3), 2041669517708205. https://doi.org/10.1177/2041669517708205
Ornati, M., & Kalbaska, N. (2022). Looking for haptics. Touch digitalization business strategies in luxury and fashion during COVID-19 and beyond. Digital Business, 2(2), 100035. https://doi.org/10.1016/j.digbus.2022.100035
OWO. (n.d.). OWO. Retrieved 17 September 2023, from https://owogame.com/
Park, S., Park, Y., & Bae, J. (2022). Performance evaluation of a tactile and kinesthetic finger feedback system for teleoperation. Mechatronics, 87, 102898. https://doi.org/10.1016/j.mechatronics.2022.102898
PBR Textures Metallic vs Specular Workflow—A23D. (n.d.). Retrieved 26 March 2024, from https://www.a23d.co/blog/pbr-textures-metallic-vs-specular-workflow
PixPlant. (n.d.). https://www.pixplant.com/
Pizenberg, M., Quéau, Y., & Elmoataz, A. (2021). Low-Rank Registration of Images Captured Under Unknown, Varying Lighting. In A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, & L. Simon (Eds.), Scale Space and Variational Methods in Computer Vision (Vol. 12679, pp. 153–164). Springer International Publishing. https://doi.org/10.1007/978-3-030-75549-2_13
Relight. (n.d.). Retrieved 14 September 2023, from https://vcg.isti.cnr.it/relight/
See, A. R., Choco, J. A. G., & Chandramohan, K. (2022). Touch, Texture and Haptic Feedback: A Review on How We Feel the World around Us. Applied Sciences, 12(9), Article 9. https://doi.org/10.3390/app12094686
SensAble. (2017, January 16). Haptic Devices | 3D Systems. https://www.3dsystems.com/haptics
Shen, V., Rae-Grant, T., Mullenbach, J., Harrison, C., & Shultz, C. (2023). Fluid Reality: High-Resolution, Untethered Haptic Gloves using Electroosmotic Pump Arrays. Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 1–20. https://doi.org/10.1145/3586183.3606771
G. Spagnoletti, L. Meli, T. L. Baldi, G. Gioioso, C. Pacchierotti, & D. Prattichizzo (2018). Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments, In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 2018 (pp. 691-692). Tuebingen/Reutlingen, Germany, 2018, doi: 10.1109/VR.2018.8446128.
Studio for Scientific Imaging and Archiving of Cultural Heritage | Munsell Color Science Lab | College of Science | RIT. (n.d.). Retrieved 14 September 2023, from https://www.rit.edu/science/studio-scientific-imaging-and-archiving-cultural-heritage#publications
TAC7 webpage. (n.d.). https://www.xrite.com/categories/appearance/total-appearance-capture-ecosystem/tac7
The PBR Guide—Part 2. (n.d.). Retrieved 26 March 2024, from https://creativecloud.adobe.com/learn/substance-3d-designer/web/the-pbr-guide-part-2
Trasforma le foto e crea grafiche di grande impatto | Adobe Photoshop. (n.d.). Retrieved 26 March 2024, from https://www.adobe.com/it/products/photoshop/landpa.html
Unreal engine. (n.d.). The most powerful real-time 3D creation tool. Unreal Engine. Retrieved 24 March 2024, from https://www.unrealengine.com/en-US/home
Van Campenhout, L., Van Camp, M., & Vancoppenolle, W. (2020). Exploring Tangible VR as a Tool for Workplace Design. In Companion Proceedings of the 2020 Conference on Interactive Surfaces and Spaces, (pp. 33–36). https://doi.org/10.1145/3380867.3426202
Vardar, Y., Wallraven, C., & Kuchenbecker, K. J. (2019). Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces. IEEE World Haptics Conference (WHC) 2019 (pp. 395–400). doi: 10.1109/WHC.2019.8816095
Vizoo—xTex Hardware Solutions for Scalable Material Digitization. (2022, March 3). https://www.vizoo3d.com/xtex-hardware/
Walt Disney Animation Studios—Physically Based Shading At Disney. (n.d.). Walt Disney Animation Studios. Retrieved 26 March 2024, from https://disneyanimation.com/publications/physically-based-shading-at-disney/
WEART haptic solutions | WEART. (n.d.). Retrieved 17 September 2023, from https://weart.it/
Whitton, M., Lok, B., Insko, B., & Brooks, F. (n.d.). Integrating Real and Virtual Objects in Virtual Environments.
Winter & Company (Director). (2023, April 13). #Phygital: Digital prototyping made simple & efficient. https://www.youtube.com/watch?v=of6Wa3asV9E
Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. https://doi.org/10.1162/105474698565686
Woodham, R. (1992). Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering, 19. https://doi.org/10.1117/12.7972479
X-Rite. (n.d.). Search. X-Rite. Retrieved 26 March 2024, from https://www.xrite.com/it-it/search
xTex website. (n.d.). https://www.vizoo3d.com/xtex-hardware/,
Zhou, Y., Zhang, J., & Fang, F. (2021). Vergence-accommodation conflict in optical see-through display: Review and prospect. Results in Optics, 5, 100160. https://doi.org/10.1016/j.rio.2021.100160
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Michele Zannoni, Riccardo Foschi, Diego Pucci, Roberto Saponelli
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SCIRES-IT, e-ISSN 2239-4303
Journal founded by Virginia Valzano