Articles

Optimized Environmental Monitoring: Innovative Solutions to Combat Climate Change


Abstract


Environmental monitoring has become a crucial component in the fight against climate change, as it allows us to analyze environmental conditions in real time and predict their long-term effects with greater accuracy. In recent years, technological innovation has opened up new avenues for more efficient and precise monitoring, offering essential support for the sustainable management of ecosystems and natural resources. This fusion of modern technology and traditional knowledge is key to effectively addressing the environmental challenges of both the present and the future. From 2014 to 2020, peculiar habitat-formers of the Adriatic Sea showed unequivocal signs of stress, possibly linked to a general warming trend of the basin. Therefore, this study investigates the marine water quality in the last 10 years in the Adriatic Sea with a multidisciplinary approach.


Keywords


Climate change; Environmental monitoring; Adriatic Sea; temperature; salinity; dissolved oxygen

Full Text:

PDF


DOI: http://dx.doi.org/10.2423/i22394303v14Sp43

References


Armenio, E., De Serio, F., & Mossa, M. (2018). Environmental technologies to safeguard coastal heritage. SCIRES‐IT ‐ SCIentific RESearch and Information Technology, 8(1), 61-78. http://dx.doi.org/10.2423/i22394303v8n1p61

Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., & Russo, A. (1997). The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr., 27, 1492–1514.

Buongiorno Nardelli B., Tronconi, C., Pisano, A., & Santoleri. R. (2013). High and Ultra-Highresolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Rem. Sens. Env., 129, 1-16, doi:10.1016/j.rse.2012.10.012.

Cleveland, R.B., Cleveland, W.S., McRae J.E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition procedure based on Loess. Journal of Official Statistics, 6(1), 373.

Chimienti, G., Angeletti, L., Furfaro, C., & Taviani. M. (2020a). Habitat, morphology and trophm of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. I Oceanogr. Res. Pap., 165, 103364.

Chimienti, G.; De Padova, D.; Mossa, M., & Mastrototaro, F. (2020b). A mesophotic black coral forest in the Adriatic Sea. Scientific Reports, 10, 8504.

Chimienti, G., De Padova, D., Adamo, M., Mossa, M., Bottalico, A., Lisco, A., Ungaro, N., & Mastrototaro, F. (2021). Effects of global warming on Mediterranean coral forests. Scientific Reports, 11, 20703.

Civitarese, G., Gačić, M., Lipizer, M., & Eusebi Borzelli, G. L. (2010). On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7(12), 3987–3997. https://doi.org/10.5194/bg-7-3987-2010

Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A. Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M.N., & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972-980.

Cushman-Roisin, B., Gačić, M., Poulain, P., & Artegiani, A. (2001). Physical Oceanography of the Adriatic Sea: past, present and future. edited by: Gandin, L., Kluwer Academic Publisher, Springer.

Deser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115-143.

De Padova, D., Amodio S., Mossa, M., & Adamo, M. (2023). Assessing COVID-19 Lockdown Effects on the Vulnerable and Sensitive Area of Taranto Basin. SCIRES-IT - SCIentific RESearch and Information Technology, 13(2), 17-26.

Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyu-bartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., & Pinardi, N. (2020). Mediterranean Sea Physi-cal Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1

Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., Schlegel, R., Bensoussan, N., Turicchia, E., Sini, M., Gerovasileiou, V., Teixido, N., Mirasole, A., Tamburello, L., Cebrian, E., Rilov, G., Ledoux, J.-B., Souissi, J. B., Khamassi, F., Ghanem, R., & Harmelin, J.G. (2022). Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology, 00, 1– 18. https://doi.org/10.1111/gcb.16301

GCOS. Global Climate Observing System. (2010). Update of the Implementation Plan for the global Observing System for Climate in Support of the UNFCCC (GCO-138).

Giorgi, F. (2006). Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734

Grbec, B. (2003). Response of the Adriatic Sea to the atmospheric anomaly. Annales Geophysicae, 25(4), 835–846, 2007. doi:10.5194/angeo-25-835-2007.

Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G., & Smale, D. A. (2018). Categorizing and naming marine heatwaves. Oceanography, 31(2), 162-173.

Kirtman, B., Power, S. B, Adedoyin, J. A., Boer, G. J., Bojariu, R. et al., (2013). Near-term climate change: Projections and Predictability. In Stocker, T.F., et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.

Limic, N., & Orlic, M. (1986). Objective analysis of geostrophic currents in the Adriatic Sea. Geofizika, 3, 75–84.

Mauri, E., Poulain, P. M., & Južniˇc-Zonta, Z. (2007). MODIS chlorophyll variability in the northern Adriatic Sea and relationship with forcing parameters. J. Geophys Res.-Ocean., 112, C03S11, doi:10.1029/2006JC003545.

Mosetti, F., & Lavenia, A. (1969). Ricerche Oceanografiche in Adriatico nel periodo 1966–1968. Boll. Geofis. Teor. Appl., 11, 191–218.

Pastor, F., Valiente, J. A., & Khodayar, S. (2020). A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sensing, 12(17), 2687.

Penna, N., Capellacci, S., & Ricci, F. (2004). The influence of the Po River discharge on phytoplankton bloom dynamics along the coastline of Pesaro (Italy) in the Adriatic Sea. Mar. Poll. Bull., 48, 321–326.

Pezzulli, S., Stephenson, D. B., & Hannachi, A. (2005). The Variability of Seasonality. J. Climate. 18, 71–88. doi:10.1175/JCLI-3256.1.

Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. (2018). The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1153–1166.

Poulain, P. M. (2001). Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. J. Marine Syst., 29, 3–32.

Orlìc, M., Dadi´c., V., Grbec, B., Leder., N. (2006). Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic. J. Geophys Res., 112, C03S07, doi:10.1029/ 2005JC003271.

Ozer, T., Gertman, I., Gildor, H., & Herut, B. (2022). Thermohaline Temporal Variability of the SE Mediterranean Coastal Waters (Israel) – Long-Term Trends, Seasonality, and Connectivity. Front. Mar. Sci., 8, 799457. doi: 10.3389/fmars.2021.799457.

Raicich, F. (1996). On the freshwater balance of the Adriatic Sea. J. Marine Syst., 9, 305–319.

Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi. E., Boero, F. (2014). Global Warming and Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea. PLoS ONE 9(12). https://doi.org/10.1371/journal.pone.0115655

Robinson, A.R., Malanotte-Rizzoli, P., Hecht, A., Michelato, A., Roether, W., & Theocharis. A. (1992). General circulation of the Eastern Mediterranean. Earth-Science Reviews, 32, 285–309.

Song, H (2019). Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2), 236-243.

Vilibić, I., Šepić J., & Proust, N. (2013). Weakening thermohaline circulation in the Adriatic Sea. Climate Research, 55(3), 217-225.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Diana De Padova, Michele Mossa, Giovanni Chimienti, Francesco Mastrototaro, Maria Adamo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

 

SCIRES-IT, e-ISSN 2239-4303

Journal founded by Virginia Valzano