Abstract
Biodiversity is essential for ecosystem balance, yet it faces growing threats from human activities and climate change. To address these challenges, Artificial Intelligence (AI) is emerging as a powerful tool for promoting biodiversity conservation and sustainable practices. This article examines how AI technologies are being combined with the Internet of Things to improve the identification of species in danger, protect habitats, and optimize resource management. It also explores real-world applications of AI in areas such as wildlife protection, environmental monitoring, and precision agriculture, with a focus on the shift from traditional farming methods to more sustainable and regenerative approaches in Agriculture 3.0 to 5.0. The article also highlights obstacles such as limited accessibility for smaller organizations. Overall, this work underscores the growing impact of AI in fostering ecological preservation and advancing sustainability efforts.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.2423/i22394303v14Sp53
References
August, T. A., Pescott, O. L., Joly, A., & Bonnet, P. (2020). AI Naturalists Might Hold the Key to Unlocking Biodiversity Data in Social Media Imagery. Patterns, 1 (7), 100116. https://doi.org/10.1016/j.patter.2020.100116
Delavaux, C.S., Crowther, T.W., Zohner, C.M., Robmann, N. M., Lauber, T., van den Hoogen, J., Kuebbing, S., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P. B., Abegg, M., Adou Yao, Y., C., Alberti, G., Almeyda Zambrano. A. M., Alvarado, B. V., Alvarez-Dávila, E., varez-Loayza, P., Alves, L. F.,... , & Maynard, D. S. (2023). Native diversity buffers against severity of non-native tree invasions. Nature, 621, 773-781. https://doi.org/10.1038/s41586-023-06440-7
European Commission, Directorate-General for Research and Innovation (2021). Industry 5.0 - Towards a sustainable, human-centric and resilient European industry. Retrieved from https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/industry-50-towards-sustainable-human-centric-and-resilient-european-industry_en on December 1st, 2024
Fountas, S., Espejo-García, B., Kasimati, A., Gemtou, M., Panoutsopoulos, H., & Anastasiou, E. (2024). Agriculture 5.0: Cutting-Edge Technologies, Trends, and Challenges. IT Professional, 26 (1), 40-47. https://doi.org/10.1109/MITP.2024.3358972
Haghighi, S. R., Saqalaksari, M. P., & Johnson, S. N. (2023). Artificial Intelligence in Ecology: A Commentary on a Chatbot’s Perspective. The Bulletin of the Ecological Society of America, 104(4): e02097. https://doi.org/10.1002/bes2.2097
Huang, K., Shu, L., Li, K., Yang, F., Han, G., Wang, X., & Pearson, S. (2020). Photovoltaic Agricultural Internet of Things towards Realizing the Next Generation of Smart Farming. IEEE Access, 8, 76300-76312. https://doi.org/10.1109/ACCESS.2020.2988663
Ma, H., Crowther, T. W., Mo, L., Maynard, D. S., Renner, S. S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P. B., Niinemets, Ü., Abegg, M., Adou Yao, Y. C., Alberti, G., Almeyda Zambrano, A. M., Alvarado, B. V. Alvarez-Dávila, E., Alvarez-Loayza, P., ... , & Zohner, C. M. (2023). The global biogeography of tree leaf form and habit. Nature Plants 9, 1795–1809. https://doi.org/10.1038/s41477-023-01543-5
Manik, L. P., Rini, D., S., Priyanti, P., Indrawati, A., Fefirenta, A. D., Akbar, A., Sumowardoyo, T., D., Apriani, N. F., Kartika, Y. A. (2024). Unraveling knowledge-based chatbot adoption intention in enhancing species literacy. Interdisciplinary Journal of Information, Knowledge, and Management, 19, 11. https://doi.org/10.28945/5280
Mo, L., Zohner, C.M., Reich, P.B., Liang, J., de Miguel, S., Nabuurs, G.-J., Renner, S. S., van den Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O. L., Gamarra, J. G. P., Hordijk, I., Routh, D., Abegg, M., Adou Yao, Y. C., ... Crowther,T. W. (2023). Integrated global assessment of the natural forest carbon potential. Nature, 624, 92-101. https://doi.org/10.1038/s41586-023-06723-z
Müller, J., Mitesser, O., Schaefer, H.M., Seibold, S., Busse, A., Kriegel, P., Rabl, D., Gelis, R., Arteaga, A., Freile, J., Leite, G. A., de Melo, T. N., LeBien, J., Campos-Cerqueira, M., Blüthgen, N., Tremlett, C. J., Bottger, D., Feldhaar, H., Grella, N., Falconí-López, A., Donoso, D. A., Moriniere, J., & Buřivalová, Z. (2023). Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests. Nature Communications, 14, 6191, https://doi.org/10.1038/s41467-023-41693-w
Nti, E. K., Cobbina, S. J., Attafuah, E. E., Opoku, E., & Gyan, M. A. (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review, Sustainable Futures 4, 100068, https://doi.org/10.1016/j.sftr.2022.100068
Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2). doi: 10.24294/nrcr.v6i2.3825
Roy, D. B., Alison, J., August, T. A., Bélisle, M., Bjerge, K., Bowden, J. J., Bunsen, M. J., Cunha, F., Geissmann, Q., Goldmann, K., Gomez-Segura, A., Jain, A., Huijbers, C., Larrivée, M., Lawson, J. L., Mann, H. M., Mazerolle, M. J., McFarland, K. P., Pasi, ... Høye, T. T. (2024). Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects. Philosophical Transactions of the Royal Society B, 379:20230108. http://doi.org/10.1098/rstb.2023.0108
Shivaprakash K. N., Swami N., Mysorekar S., Arora R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12):7154. https://doi.org/10.3390/su14127154
Silvestro, D., Goria, S., Sterner, T., & Antonelli, A. (2022). Improving biodiversity protection through artificial intelligence. Nature Sustainability, 5, 415-424, https://doi.org/10.1038/s41893-022-00851-6
Sworna, Z.T., Urzedo, D., Hoskins, A.J., & Robinson, C. J. (2024) The ethical implications of Chatbot developments for conservation expertise. AI and Ethics, 4, 917–926. https://doi.org/10.1007/s43681-024-00460-3
Tuia, D., Kellenberger, B., Beery, S., Blair R., Costelloe, B. R., Zuffi, S., Risse, B., Mathis, A., Mathis, M. W., van Langevelde, F., Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin, I. D., van Horn, G., Crofoot, M. C., Stewart, C. V., & Berger-Wolf, T. (2022). Perspectives in machine learning for wildlife conservation. Nature Communications, 13, 792. https://doi.org/10.1038/s41467-022-27980-y
Ullah, F., Saqib, S., & Xiong, YC. (2024). Integrating artificial intelligence in biodiversity conservation: bridging classical and modern approaches. Biodiversity and Conservation. https://doi.org/10.1007/s10531-024-02977-9
Urzedo, D., Sworna, Z.T., Hoskins, A.J., & Robinson, C. J. (2024). AI chatbots contribute to global conservation injustices. Humanities and Social Sciences Communications 11(204). https://doi.org/10.1057/s41599-024-02720-3
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Giorgio De Nunzio, Rocco Rizzo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SCIRES-IT, e-ISSN 2239-4303
Journal founded by Virginia Valzano